EngineAir Motor Prototype
Imagine a vehicle with nothing under the hood (or bonnet), no gearbox, no transmission, no carburetor or other fuel feeds. Yet it converts virtually all the energy fed to its motors into actual motion. With the elegance of absolute simplicity, this concept makes traditional internal-combustion cars look like the Rube-Goldberg contraptions they are: using way too many parts and stages to do what is really a simple task.
All we have to do is to get wheels to turn, preferably with as little wasted motion and energy as possible.
By comparison, the traditional car’s engine uses up to about 65% of the energy potentially available from the fuel, just to move all its parts such as pistons and cams, plus what is wasted generating excess heat. Then the transmission uses 6%, the accessory load 2% and idling losses come to about 11%, leaving about 16% of the energy actually engaged in making the wheels turn. Because of the weight of all these structures, the engine block, crankshaft, gears, transmission, etc., that 16% of the energy is having to move a vehicle weighing perhaps a ton and a half – which may have only one person sitting in it, weighing only 150 lb.
There is a lot wrong with that 100-year-old picture. It should be laughed off the road as unsuitable for the 21st century.
In Melbourne, Australia, an Italian-born mechanical engineer named Angelo Di Pietro has been experimenting for many years to find a more efficient design than the traditional reciprocating combustion engine. Inspired by his earlier work on Wankel rotary engines at Mercedes Benz in Germany, he pursued the notion of a rotary engine with fewer parts. Since his 1999 breakthrough, Di Pietro has been testing and perfecting his unique design which also eliminates traditional pistons and their housings. Though it weighs only 13 kilograms (28.6 lb), this rotary air motor is capable of powering a car without creating any pollution.
The Rotary Piston Unit
Cross section of Engineair motor.